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w 1. F o r  suff ic ient ly  high flux densi t ies  in the rad ia t ion  of  an opt ical  quantum genera to r  (OQG) the hydro-  
dynamic m e c h a n i s m  of the propagat ion of the p l a sma  boundary toward the r a y  (the luminescence  detonation) 
will be  r ep laced  by a rad ia t ion  mechan i sm.  The p l a sma ,  which has been heated to a high t e m p e r a t u r e ,  emi ts  
intense u l t ravio le t  radia t ion.  Such radia t ion  is abso rbed  in the cold l aye r s  of the a i r  surrounding the p l a sma ,  
so  that  the a i r  l aye r s  a r e  heated and ionized and a b s o r b  the l a s e r  radia t ion.  As a r e su l t ,  these  l aye r s  t h e m -  
se lves  begin to emi t  h i g h - t e m p e r a t u r e  radia t ion and so on - a radia t ion wave is p ropaga ted  through the gas in a 
di rect ion opposi te  to that  of the beam.  If the veloci ty  Of propagat ion of  the p l a sma  f ront  is much higher than 
the veloci ty  of sound in the hot p l a s m a  (a fas t  superson ic  wave),  the hydrodynamic  p r o c e s s e s  will not produce 
any substant ia l  effect  on the p a r a m e t e r s  of the heated gas ,  the densi ty of which will be  c lose  to the or ig inal  
densi ty  in the undis turbed state.  

Ra i ze r  [ t ,  2] gives approx ima te  e s t i m a t e s  for  the p a r a m e t e r s  of a supersonic  radia t ion  wave fo r  the 
case  in which the b e a m  d i ame te r  and  the t r a n s v e r s e  d imension of the p l a sma  cloud a r e  sma l l  and the cloud is 
g rea t ly  elongated along the beam.  He a s s u m e d  that the hot p l a s m a  emi ts  a vo lumet r i c  radia t ion  and that the 
radia t ion  reach ing  the p l a s m a  f ront  is essen t ia l ly  rad ia t ion  f r o m  dis tances  of the o rde r  of the b e a m  d iamete r .  

In [3], calculat ions of the r ad i a t i on -gas  dynamics  p r o b l e m  w e r e  c a r r i e d  out for  the case  in which the 
b e a m  d iame te r  is f a i r l y  l a rge  and the si tuat ion is c lose  to a plane situation. In the p lane  case ,  for  asuf f ic ien t ly  
long t ime  of act ion,  the  optical  th ickness  of the p l a s m a  layer  approaches  unity, and t h e r e f o r e  the m a x i m u m  
fluxes of the rad ia t ion  genera ted  in the hot p l a sma  a re  c lose  to the f luxes of b lack-body  radia t ion at a c o r r e -  
sponding t e m p e r a t u r e  and much l a r g e r  than the fluxes of radia t ion f r o m  an opt ical ly  thin volume;  the ve loc i ty  
of propagat ion  of the wave  will a l so  be co r respond ing ly  g r ea t e r .  

Conditions c lose  to plane conditions will n e c e s s a r i l y  exist  if the b e a m  r a d i u s  R 0 is much l a r g e r  than the 
t r a v e r s e d  dis tance L. However ,  the following question a r i s e s :  Is the condition R 0 ~ L a n e c e s s a r y  one ? 

It is t h e r e f o r e  des i r ab le  to inves t igate  in detail  the effect  of two-d imens iona l i ty  on the propagat ion of the 
p l a s m a  f l a r e  for finite b e a m  d iame te r .  

When the densi ty  of the med ium r e m a i n s  unchanged, for  the calculat ion of the p rob l em concerning the 
propagat ion of a two-d imens iona l  rad ia t ion  wave the propagat ion  equations of the rad ia t ion  mus t  be sotved 
s imul taneous ly  with the energy  equation alone,  not with a comple te  s y s t e m  of hydrodynamic  equations.  

The energy  equation for  p = p o = c o n s t  has the f o r m  

pOe~Or = - -  divF, (1.1) 

where  e is the speci f ic  in ternal  energy  (of a unit mass ) ;  F is the flux densi ty of the rad ian t  energy.  The r a d i a -  
tion propagat ion  equation for  the spec t r a l  densi ty of the rad ia t ion  I v , p ropagated  in the d i rec t ion  ~ ,  has the 
f o r m  

0I~ /aQ = - -  k v  ( I v  - -  B v  ) ,  (1.2) 

where  k V is the l inear  coeff icient  of absorpt ion;  By (v,  T) is the Planck function. The connection between the 
flux densi ty and the intensi ty  I v is given by the express ion  
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r = y (1.3) 
0 

The s y s t e m  (1.1)-(1.3) is supplemented  by some  informat ion concerning the optical  and thermodynamic  
p r o p e r t i e s  of the medium,  i .e . ,  by  the equation of s ta te  T =T(e ,  p) and the functional re la t ions  giving the ab-  
sorpt ion  coeff ic ients  k r = k v 0 ,  , T,  p). In o rde r  to so lve  the p rob lem,  we used a p rev ious ly  developed method 
for solving p rob l em s  concerning the heating and cooling of a fixed gaseous med ium (or one moving according  
to a speci f ied  law) by a nonequi l ibr ium radia t ion  in the two-d imens iona l  axial ly  s y m m e t r i c  case .  This  method 
is a genera l iza t ion  of a s i m i l a r  method for the spher i ca l ly  s y m m e t r i c  p rob l em desc r ibed  in [4]. Since it can 
a lso  be  used  in solving other  two-d imens iona l  p rob l ems  re la t ing  to the propagat ion of fast  t h e r m a l  waves with 
nonequi l ibr ium rad ia t ion  or  can be a component  par t  of a method for the solution of analogous p rob lems  with a 
comple te  s y s t e m  of gasdynamic  equations,  we shal l  de sc r i be  it br ief ly .  

w 2. A cyl indr ica l  vo l um e  is subdivided into a countable number  of cei ls  by planes perpendicular  to the 
a~xis of s y m m e t r y  (z axis) and divided into  annuli by cyl indr ica l  , tubes, ,  along the axis .  Each such cel l  with 
indices s,  j is defined by  speci fying the two planes perpendicular  to the z axis  which have the coordinates  zj 
and zj + l (where j is the number  o f  the disk, counted f r o m  the base  of the cylinder) and specifying the inner 
rad ius  r s and the outer  r ad ius  r s + ~ of the tube (where s is the number  of tube). 

We a s s u m e  that within each  cel l  the energy,  densi ty,  and absorp t ion  coeff ic ients  a r e  constant ,  the t e m -  
pe r a tu r e  v a r i e s  accord ing  to a parabol ic  law, and the Planck function has the f o r m  

B = a +  br 2 + c z  s, (2.1) 

where  the constants  a ,  b, and c a r e  de te rmined  by the Planck functions co r respond ing  to the t e m p e r a t u r e s  at  
the boundar ies  of the cel l .  For  s impl ic i ty  of notation, he re  and h e r e a f t e r  we shal l  omit  the f requency index. 

Let us consider  the solution of the rad ia t ion  propagat ion  equation (1.2). Fo r  the intensi ty of the radia t ion  
at the point gt in the d i rec t ion  fl the equation has the f o r m  

I (.(2.) :-  I (Qo) e a~ -~- .[ k (.o.,) B (fl') e "q' dfl'. (2.2) 
-qo 

Substituting into (2.2) the Planck function in the f o r m  (2.1) and integrat ing over  an in terval  of the b e a m  
I~2 f r o m  the point 1 with coordina tes  r I and z~ to the point 2 with coordinates  r 2 and z2, we obtain an express ion  
for the in tensi ty  of the rad ia t ion  at  the point 2: 

I .  I~e - ~ v - - k  B.2 B~e--kD , I [ 2 z . 2 = --  ,-r ~ b (rl - -  r2) -t- [bd 2 . S -  

- + - -  ~ - -  ~ (z2 - -  zl)(z.2 - -  z~e--~D), (2.3) 

where  I1, I2, Bl, B 2 a r e  the values  of the rad ia t ion  intensi ty and the Planek function at the points 1 and 2; D is 
the length of the in te rva l  of the b e a m  [l between the points 1 and 2; and d is the length of the project ion of this 
b e a m  onto a plane perpendicu la r  to the z axis .  

We introduce the angle 0 _~ (p _< ~r, f o rm ed  by the d i rec t ion of the radia t ion  ~t with the z axis ,  and the angle 
0 ~ 0 ~ ~,  f o rmed  by the pro jec t ion  of the b e a m  ~ onto the plane perpendicu la r  to the z axis with the r ad iu s -  
vec to r  r in this plane. 

In the case  of axia l  s y m m e t r y  the rad ia t ion  field is independent of the polar  angle,  and consequently the 
angles  ~ and 0 comple te ly  de t e rmine  the di rect ion of the radia t ion  at each point of space  with coordinates  r and 
Z .  

We exp re s s  the constants  and functions in the express ion  (2.3) in t e r m s  of the coordinates  r and z and the 
angles ~0 and 0 for  the case  in which the point 2 coincides with the point s, j (i.e., z~=zj and r2= r s )  , and the 
di rect ion of the radia t ion  ~l is given by the angles 0 and (p at this point. The point 1 is on the boundary sur face  
of the cell  under cons idera t ion  and the values  of its coordinates  depend on the angles  0 and ~p. Thus,  

rs_ I ~ r~ <~ r,  for 0 <~ 0 ~< zc/2 and r,~.~ r I ~< r,+ I -for ~/2 ~< 0 ~< :~; 

zj_l ~. zl ~< zi for 0 -~< q~ ~< :t/2and zi~-~ z I -~< z.f+l for ~/2 << ~ .~< ~z. 
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The connect ion between the g e o m e t r i c  quantities in the plane perpendicular to the z axis  is  the s a m e  as  in 
the spher ica l ly  s y m m e t r i c  c a s e  [4]: 

] cos o~ I = V t - -  (r, /rp) = sin 2 O, 

8 = r s c o s 0 ~ r p c o s ~ ,  

s t 0 ~ 0 ~ 0 x  
p =  ? for 0 , ~ 0 ~ n / 2  

where  ~ is  the angle f ormed  by the project ion of the b e a m  • with the r a d i u s - v e c t o r  at the point rp; 5 is  the 
d imens ion  of  the ce l l  a long the project ion of the b e a m  12_;, 0 2 = a r e s i n  0rs_l /rs) .  

Depending on the value of  the angle ~ ,  the constants  and functions m the e x p r e s s i o n  (2.3) take on the 
values  shown in Table 1, w h e r e  the va lues  of the angle ~ k  are  determined f r o m  the re lat ion  
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=# - -  =i where i ---- f6r 
cosq:~=,V.~,+( : j_=~)~ + i  c p > ~ 1 2 .  

By substituting into (2.3) the values of the functions shown in Table I, we can obtain an expression for 
determining the radiation field in the entire region under consideration. 

The calculation of the propagation equation for a given intensity of the radiation hitting the boundary of 
the region is carried out from this boundary to the center of the region. Thus, for each angle .7r/2 _< e _<Tr we 
determine the radiation intensities in the angular interval 0 _< r _< 7r/2 for all annuli of a particular cylindrical 
tube in succession from the bottom annuli to the top ones, and then for the same annuli in the opposite direction 
in t he  a n g u l a r  i n t e r v a l  rr/2 _< tp _< 7r. 

The  r e s u l t i n g  i n t e n s i t y  v a l u e s  fo r  a c y l i n d r i c a l  s u r f a c e  w i t h  r a d i u s  r s in t h e  a n g u l a r  i n t e r v a l  7r/2 _ 0_<Tr 
a r e  the  i n i t i a l  v a l u e s  no t  on ly  fo r  the  po in t s  w i th  r a d i u s  r s _  1 < r s in the  s a m e  i n t e r v a l  of 0 v a l u e s ,  bu t  a l s o  fo r  
a l l  po in t s  w i th  r a d i u s  r 1 _> r s in t h e  a n g u l a r  i n t e r v a l  0~_< 0-_< 0 t, w h e r e  

cos 0z-----VI -- (rJrl)~; cos 0~ ~ ]/I -- (rs_ilrl)S. 

The proposed scheme for calculating the propagation equation enables us to reduce sharply the size of 
the machine memory required for an accurate calculation of the radiation field, since with this approach a set 
of spectral intensities which is complete for the angular values is stored at each point zj for ordy one radius, 
while for all the other points with different radii we store values which are integral with respect to the angles - 
the radiation fluxes. 

The radiation flux densities integrated over the entire frequency spectrum are substituted into the right 
side of the energy equation (1.1). 

To solve the energy equation, we used Euler's method with conversion. 

w Using the above-described method, we carried out the calculation of the problem of the propagation 
oI~ a supersonic radiation wave in air with density equal to 0.1 times the normal density, brought about by the 
action of radiation from a neodymium OQG (hp = 1.16 eV) with a constant flux density of q0 = 1000 MW/cm ~ and 
a pulse length of about 300 nsec, i.e., for the same conditions as we used in [3] but for a finite beam radius R0= 
0.4 cm. 
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As the equation of state of the a i r ,  we used the table f r o m  [5]. The radiat ion propagation equation was 
solved for  six groups {the same as in [3]), which were  bounded by the following values Of quantum energy:  
0 ... 6.52 ... 7.95 ... 9.96 ... 18.6 ... 80.5 ... 248eV. The absorption coefficients for these groups were  obtained 
by averaging by Planck,s method the tables of the optical proper t ies  of air  [6]. 

The functions showing the var ia t ion of the radiat ion path length l as a function of t empera tu re  T for 
spec t ra l  groups I, IV, and V, as well as for the radiat ion of the neodymium laser ,  a re  shown in Fig. 1. 

The propagation of the radiat ion in hot p lasma With a t empera tu re  of about 5-10 eV takes place essen-  
t ially in groups IV and V; the radiat ion of  these groups is s t rongly  absorbed in the cold: layers  of a i r ,  which 
ensures  passage through the plasma boundary in a direction opposite to the l a se r  radiation�9 For  t empera tu res  
higher than 3-4 eV the path length of the laser  rad ia t ion  i s  less  than the l~th length of the radiat ion in these 
groups,  and the hea t ingof  the p lasma at these and higher t empera tu res  is due to the absorption of the laser  
radiat ion energy.  The radiation, path length in the f i r s t  group, when the  t empera tu re  decreases ,  will increase  
in approximately the same way as the laser  radiat ion path length. Low- tempera ture  plasma and cold air  a re  
t ransparen t  to the quanta of this group. The radiat ion belonging to th is  group ensures  the loss of energy f rom 
the p lasma flare.  

As can be seen f r o m  Fig. 1, for high t empera tu res  the average  Planck path lengths of the radiat ion in all 
of the above-mentioned groups a r e  of the o rder  of 0.5-2 cm, i.e., p lasma with the same charac te r i s t i c  dimen- 
sions is semi t ransparen t  to the radiation.  In order  to determine the radiat ion energy fluxes in the  given cases ,  
we mus t  solve the radiat ion propagation equation, since we csnnot use ei ther  a radia t ive-heat -conduct ion 
approximation or a vo lumet r ic - luminescence  approximation. This is all the more  t rue for  the p lasma-f ron t  
region,  where the radiat ion is essent ial ly  of the nonequil ibrium type. 

The number of spect ra l  groups was selected with a view to ensuring comparabi l i ty  with the resu l t s  of the 
plane problem [3] and keeping the problem within the l imitations of the B]~SM='4 computer  that was ~ used. 

At the initial instant of t ime the plasma layer  was considered to be cyl indrical  with a radius equal to the 
radius of the beam, i.e.,  0.4 cm, uniformly heated along the radius.  The t empera tu re  distribution along the z-  
coordinate was taken f r o m  the solution of the one-dimensional  plane problem [3] for an analogous variant  a t  a 
t ime equal to about 50 nsec.  This instant of t ime was taken to  be the zero  t ime value for the calculation. The 
original  thickness of the p lasma layer  was L=0 .5  cm, i.e., only slightly more  than half the diameter  of the 

~ ' cy t inde rand  the beam. The initial energy was about 25 J; at the end of the action of the laser:  pulse (300 nsec) 
the energy was about-tTfi-~J~ -- T h e  laser  r ad i a t i onwas  propagated along the z axis in the negative direction. 

The total number  of calculation layers  with r e spec t  to t ime was more  than 50. The distance step (both 
along the radius  and along the z a x i s ) w a s  0.1 cm. The-propagation equation was integrated along 50 beams in 
both directions (10 values of the angle cp f r o m  O'to x and five va!~es of the angle 0 f r o m  0 to r/2) for each of  
the six spec t ra l  groups. 

The calculation resu l t s  a re  shown in Figs.  2-6,  where t is the t ime in nsee;  r is the radius and z is the 
�9 �9 3 o ' axial coordinate in cm; T is the t empera tu re  m 10 K; W is the amount of energy lost in the radiation in J; and 

q, F are  the laser  and cha rac te r i s t i c s  flux densit ies of the  radiat ion in MW/cm 9. 

Figure  2 shows the distr ibutions of the t empera tu re  along the ax i s  of s y m m e t r y  (with respec t  to z for r = 
0) for  different instants of time. The picture is qualitatively close to the one obtained ear l ie r  in the solut ion 
of the one-dimensional  problem [3]: We a r r i ve  fairly rapidly at a quasis ta t ionary reg ime  of propagation o f  the 
plasma front in a direct ion opposite to the radiat ion,  and the maximum tempera tu re  remains  pract ica l ly  un- 
changed. The veloci ty of its propagation (~ 70 km/sec)  and the maximum tempera tu re  behin~d the front (90,000 
~ a re  close to the corresponding values for the plane case.  

Figure  3 shows the var ia t ion With t ime of the  boundary o f  the p lasma region (more precise ly ,  of points 
with a t empera tu re  of 3000~ in three  charac te r i s t i c  direct ions - toward the l ase r  beam (z -~, in the opposite 
direct ion (z-) ,  and in the direct ion of R, perpendicular  to the axis of s y m m e t r y  (z = 0). By t ime t = 300 nsee 
the length of the p lasma f lare  (z ++ ] z - I ) amounted to 3 .5 cm, which is more  than four t imes the diameter  of 
the i r radiated spot; in the la tera l  direction the dimension of the f lare increased  to a lmost  tb.r, ee t imes the 
original  dimension. The dashed-dot  curve cor responds  to the advance of the zone with maximum tempera ture  
behind the front�9 

Figure  4 shows the i so therms  charac te r i s t i c  of the spatial distribution of the t empera tu re  within the 
f lare  for two instants of t ime - 153 and 233 nsee.  
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The ene rgy  l o s s e s  f r o m  the f l a re  as a r e su l t  of the radia t ion  a r e  shown in Fig. 5 as functions of t ime.  
The value W of the emit ted  ene rgy  was  found f r o m  the in tegra l  fluxes emerg ing  through the end faces  and the 
l a t e r a l  su r face  of the cyl inder  within which the f l a re  was  si tuated.  The value of the energy  exiting through the 
l a t e ra l  su r face  is indicated by subsc r ip t  "0",  the energy  through the end face  toward the l a se r  b e a m  by the 
s u p e r s c r i p t  ,,+" and the energy  in the opposi te  d i rec t ion  by the s u p e r s c r i p t  , - ' , .  The main energy  loss  takes  
place  as a r e s u l t  of the emis s ion  through the l a t e r a l  su r face .  However ,  the total  value of energy  lost ,  W =W 0 + 
W++W - ,  was found to be  f a i r ly  smal l .  Thus,  by 300 nsec  we have W - 7  J,  which is only about 4% of the energy 
supplied to the OQG. 

F igu re  6 shows the dis t r ibut ion along z (for r =0) of the flux densi ty q of the l a s e r  radia t ion and the flux 
densi ty F z of the c h a r a c t e r i s t i c  radia t ion,  as well as  the t e m p e r a t u r e  T nea r  the advancing p l a s m a  front  for 
t ime  t =233 nsec .  It can be seen  that the l a s e r  radia t ion  begins to be marked ly  abso rbed  in the region with 
t e m p e r a t u r e  higher than 10,000-15,000~ It follows f r o m  Fig. 6 that  the c h a r a c t e r i s t i c  depth of penet ra t ion  of 
the l a s e r  rad ia t ion  into the p l a s m a  (when q d e c r e a s e s  by a fac tor  of e) is ~ 0.2 cm.  About the s a m e  value is 
feund for  the d is tance  f r o m  the point where  the flux of c h a r a c t e r i s t i c  rad ia t ion  r eached  its m a x i m u m  to the 
point where  it is p rac t i ca l ly  comple te ly  absorbed .  The t e m p e r a t u r e  r e a c h e s  its m a x i m u m  value at d is tances  
oJ~ ~0 .4  c m  f r o m  the point where  the intensive absorp t ion  of the l a s e r  rad ia t ion  begins.  

Thus,  the c h a r a c t e r i s t i c  width of the p l a s m a  front  A is 0.2-0.4 cm,  i .e . ,  l ess  than the rad ius  of the beam.  
IVIoreover, the f luxes of c h a r a c t e r i s t i c  rad ia t ion  a r e  in genera l  much lower than q0; they a r e  only enough to 
ensure  heating of the p l a s m a  to the , i g n i t i o n ,  t e m p e r a t u r e  [1-3] and init iate the absorp t ion  of the l a s e r ,  while 
essen t ia l ly  the f ront  moves  because  of the l a s e r  energy.  This  is a l so  the explanation for  the elongated na ture  
of the f l a re  - expansion to the side takes  place  only as a r e s u l t  of the fluxes F r ,  which are  on the o r d e r  of F z or  
hess. It b e c o m e s  c l ea r  why in this case  the advancing p l a s m a  front  moves  with a veloci ty  close t o t h e v e l o c i t y i n  
the plane case :  The effects  of two-d imens iona l i ty  mani fes t  t hemse lves  only at a g rea t  d is tance f r o m  the ad-  
vancing f ront ,  outside the reg ion  in which the l a se r  rad ia t ion  energy  is produced;  t he re fo re ,  the c r i t e r ion  of 
c loseness  to the plane case  is the condition A ~ R0 ' not L ~ R 0. 

Since the motion of the f l a re  boundar ies  in the l a t e r a l  d i rec t ion and backward  is gradual ly  slowed down, 
tJae accumula t ing  hydrodynamic  d i s tu rbances  lead, in the final ana lys i s ,  to the fo rmat ion  of a shock wave and 
an expansion of  the p l a s m a  by  a hydrodynamic  mechan i sm.  However ,  for  A ~ R 0 this p roce s s  has no effect  on 
the motion of the advancing f ront  by the rad ia t ion  mechan i sm.  

Thus,  for  ene rg ies  in the o rde r  of 100-1000 J we can o b s e r v e  the motion of p l a sma  f ronts  by the r a d i a -  
tion m e c h a n i s m  at  ve loc i t i es  subs tant ia l ly  g r e a t e r  than the veloci ty  of propagat ion of luminescence-de tona t ion  
waves .  Such energ ies  a r e  within the l imi t s  that  have a l r eady  been at tained today (see, for  example ,  [7]). It 
would be of in te res t  to conduct app rop r i a t e  expe r imen t s  and to compa re  the i r  r e su l t s  with the theore t ica l  p r e -  
dictions given above.  
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