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§1. For sufficiently high flux densities in the radiation of an optical quantum generator (OQG) the hydro-
dynamic mechanism of the propagation of the plasma boundary toward the ray (the luminescence detonation)
will be replaced by a radiation mechanism. The plasma, which has been heated to a high temperature, emits
intense ultraviolet radiation. Such radiation is absorbed in the cold layers of the air surrounding the plasma
so that the air layers are heated and ionized and absorb the laser radiation. As a result, these layers them-
selves begin to emit high-temperature radiation and so on — a radiation wave is propagated through the gas in a
direction opposite to that of the beam. If the velocity of propagation of the plasma front is much higher than
the velocity of sound in the hot plasma (a fast supersonic wave), the hydrodynamic processes will not produce
any substantial effect on the parameters of the heated gas, the dens1ty of which will be close to the original
density in the undisturbed state,

" Raizer [1, 2] gives approximate estimates for the parameters of a supersonic radiation wave for the
case in which the beam diameter and the transverse dimension of the plasma cloud are small and the cloud is
greatly elongated along the beam. He assumed that the hot plasma emits a volumetric radiation and that the
radiation reaching the plasma front is essentially radiation from distances of the order of the beam diameter.

In [3], calculations of the radiation-gas dynamics problem were carried out for the case in which the
beam diameter is fairly large and the situation is close to a plane situation. In the plane case, for asufficiently
long time of action, the optical thickness of the plasma layer approaches unity, and therefore the maximum
fluxes of the radiation generated in the hot plasma are close to the fluxes of black-body radiation at a corre-
sponding temperature and much larger than the fluxes of radiation from an optically thin volume; the velocity
of propagation of the wave will also be correspondingly greater.

Conditions close to plane conditions will necessarily exist if the beam radius R, is much larger than the
traversed distance L. However, the following question arises: Is the condition RS L a necessary one ?

It is therefore desirable to investigate in detail the effect of two~dimensionality on the propagation of the
plasma flare for finite beam diameter.

When the density of the medium remains unchanged, for the calculation of the problem concerning the
propagation of a two-dimensional radiation wave the propagation equations of the radiation must be solved
simultaneously with the energy equation alone, not with a complete system of hydrodynamic equations.

The energy equation for p =p,=const has the form
poelot = — divF, (1.1)

where e is the specific internal energy (of a unit mass); F is the flux density of the radiant energy. The radia-
tion propagation equation for the spectral density of the radiation I, , propagated in the direction Q, has the
form

oI, 10Q = — ky (I, — By ), (1.2)

where k, is the linear coefficient of absorption; By (v, T) is the Planck function. The connection between the
flux density and the intensity I, is given by the expression
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F = (a0 03 1,9dv. (1.3)

The system (1.1)-(1.3) is supplemented by some information concerning the optical and thermodynamic
properties of the medium, i.e., by the equation of state T =T(e, p) and the functional relations giving the ab-
sorption coefficients kj, =k, (v, T, p). In order to solve the problem, we used a previously developed method
for solving problems concerning the heating and cooling of a fixed gaseous medium (or one moving according
to a specified law) by a nonequilibrium radiation in the two-dimensional axially symmetric case. This method
is a generalization of a similar method for the spherically symmetric problem described in [4]. Since it can
also be used in solving other two-dimensional problems relating to the propagation of fast thermal waves with
nonequilibrium radiation or can be a component part of a method for the solution of analogous problems with a
complete system of gasdynamic equations, we shall describe it briefly.

§2. A cylindrical volume is subdivided into a countable number of cells by planes perpendicular to the
axis of symmetry (z axis) and divided into annuli by cylindrical "tubes" along the axis. Each such cell with
indices s, j is defined by specifying the two planes perpendicular to the z axis which have the coordinates zj
and zj +; (where j is the number of the disk, counted from the hase of the cylinder) and specifying the inner
radius rg and the outer radius rg 4 ; of the tube (where s is the number of tube).

We assume that within each cell the energy, density, and absorption coefficients are constant, the tem-
perature varies according to a parabolic law, and the Planck function has the form

B = a4 br? 4 cz?, 2.1)

where the constants ¢, b, and ¢ are determined by the Planck functions corresponding to the temperatures at
the boundaries of the cell. For simplicity of notation, here and hereafter we shall omit the frequency index,.

Let us consider the solution of the radiation propagation equation (1.2). For the intensity of the radiation
at the point @ in the direction @ the equation has the form

Q Q
— [r@naer 2 — | b(@ryaer
TQ=IQ)e % + [r@)B@)e ¥ Q. 2.2)
Qp

Substituting into (2.2) the Planck function in the form (2.1) and integrating over an interval of the beam
& from the point 1 with coordinates r, and z, to the point 2 with coordinates r, and z,, we obtain an expression
for the intensity of the radiation at the point 2:

I,=1e " + B,— Be™*? + }%{b (75— r8) + o b2 +

T

ez, — 21)2]}(1 —e ) bd'(l e T (z2 z))(z, — z,67*7), 2 3)

where I, I, By, B, are the values of the radiation intensity and the Planck function at the points 1 and 2; D is
the length of the interval of the beam @ between the points 1 and 2; and d is the length of the projection of this
beam onto a plane perpendicular to the z axis.

We introduce the angle 0 <¢ < 7, formed by the direction of the radiation Q with the z axis, and the angle
0 = 8= 7, formed by the projection of the beam Q onto the plane perpendicular to the z axis with the radius-
vector r in this plane.

In the case of axial symmetry the radiation field is independent of the polar angle, and consequently the
angles ¢ and 8 completely determine the direction of the radiation at each point of space with coordinates r and
Z,

We express the constants and functions in the expression (2.3) in terms of the coordinates r and z and the
angles ¢ and 0 for the case in which the point 2 coincides with the point s, j (i.e. zz—~zJ and ry=rg), and the
direction of the radiation @ is given by the angles ¢ and ¢ at this point, The pomt 1 is on the boundary surface
of the cell under consideration and the values of its coordinates depend on the angles 6 and¢. Thus,

T Kn<r, for 0<OLa2andr, K<<y, “for a2 <o m;

==
2, K5 <<z for 0 oCa/2and 2oy <2y for al2<K oo
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The connection between the geometric quantities in the plane perpendicular to the z axis is the same as in
the spherically symmetric case [4]:

| cosa| =V T —=(r,fr,)*sin0, s—1 0<o<8,

p={ s for 6,<O n/2
8 =r,cos8 —rpcosa, s+1 a2,

where « is the angle formed by the projection of the beam @ with the radius-vector at the point rp; & is the
dimension of the cell along the projection of the beam Q; 6,=aresin (rs-1/Ts).

Depending on the value of the angle ¢, the constants and functions in the expression (2.3) take on the
values shown in Table 1, where the values of the angle ¢ are determined from the relation
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. i—1 ~ ¢ <<u/2
,where i = for __

i+1 o>aj2.

Z;— 2
COS @p = e
V&G =)

By substituting into (2.3) the values of the functions shown in Table 1, we can obtain an expression for
determining the radiation field in the entfire region under consideration.

The calculation of the propagation equation for a given intensity of the radiation hitting the boundary of
the region is carried out from this boundary to the center of the region. Thus, for each angle n/2 <6 <7 we
determine the radiation intensities in the angular interval 0 =¢ =7/2 for all annuli of a particular cylindrical
tube in succession from the bottom annuli to the top ones, and then for the same annuli in the opposite direction
in the angular interval 72 <¢ < 7.

The resulting intensity values for a cylindrical surface with radius rg in the angular interval /2 < 6=<n
are the initial values not only for the points with radius rg_; <rg in the same interval of 6 values, but also for
all points with radius r; = rg in the angular interval 8,=< 6< 6,, where

cos O,=VYT — (r,/r)%; cos 0, = V1 — (r, e

The proposed scheme for calculating the propagation equation enables us to reduce sharply the size of
the machine memory required for an accurate calculation of the radiation field, since with this approach a set
of spectral intensities which is complete for the angular values is stored at each point z§ for only one radius,
while for all the other points with different radii we store values which are integral with respect to the angles ~
the radiation fluxes. '

The radiation flux densities integrated over the entire frequency spectrum are substituted into the right
side of the energy equation (1.1).

To solve the energy equation, we used Euler's method with conversion.

§3. Using the above-described method, we carried out the calculation of the problem of the propagation
of a supersonic radiation wave in air with density equal to 0.1 times the normal density, brought about by the
action of radiation from a neodymium OQG (h;, = 1.18 eV) with a constant flux density of q,=1000 MW/cm? and
a pulse length of about 300 nsec, i.e., for the same conditions as we used in [3] but for a finite beam radius Ry=
0.4 cm.
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As the equation of state of the air, we used the table from [5]. The radiation propagation equation was
solved for six groups (the same as in [3]), which were bounded by the following values of quantum energy:
0..6.52...7.95 ...9.96... 18.6... 80.5...248eV. The absorption coefficients for these groups were obtained
by averaging by Planck's method the tables of the optical properties of air [6].

The functions showing the variation of the radiation path length [ as a function of temperature T for
spectral groups I, IV, and V, as well as for the radiation of the neodymium laser, are shown in Fig. 1.

The propagation of the radiation in hot plasma with a temperature of about 5-10 eV takes place essen-
tially in groups IV and V; the radiation of these groups is strongly absorbed in the cold layers of air, which
- ensures passage through the plasma boundary in a direction opposite to the laser radiation. For temperatures
hlgher than 3-4 eV the path length of the laser radiation is.less than the path length of the radiation in these
groups, and the keating of the plasma at these and higher temperatures is due to the absorption of the laser
radiation energy. The radiation path length in the first group, when-the temperature decreases, will increase
in approximately the same way as the laser radiation path length. Low-temperature plasma and cold air are
transparent to the quanta of this group. The radiation belongmg to this group ensures the loss of energy from
~-the plasima flare, .

As can be seen from Fig. 1, for high temperatures the average Planck path lengths of the radiation in all
of the above-mentioned groups are of the order of 0.5-2 cm, i.e., plasma with the same characteristic dimen-
sions is semitransparent to the radiation. In order to determme the radiation energy fluxes in the given cases,
we must solve the radiation propagation equation, since we cannot use either a radiative-heat-conduction
approximation or a volumetric-luminescence approximation. This is all the more true for the plasma-front
region, where the radiation is essentially of the nonequilibrium type.

The number of spectral groups was selected with a view to ensuring comparability with the results of the
plane problem [3] and keeping the problem within the limitations of the BESM-4 computer that was used.

At the initial instant of time the plasma layer was considered to be cylindrical with a radius equal to- the
radius of the beam, i.e., 0.4 ¢cm, uniformly heated along the radius.. The temperature distribution along the z-
coordinate was taken from the solution of the one-dimensional plane problem [3] for an analogous variant at a
time equal to about 50 nsec. This instant of time was taken to be the zero time value for the calculation. The
original thickness of the plasma layer was L=0.5 cm, i.e., only slightly more than half the diameter of the
““eylinder.and the beam. The initial energy was about 25 J; at the end of the action of the laser: pulse (300 nsec)
the energy was about”175-J+- The laser radiation was propagated along the z axis in the negative direction.

The total number of calculation layers with respect to time was more than 50. The distance step (both
along the radius and along the z axis) was 0.1 cm. The-propagation equation was integrated along 50 beams in
both directions (10 values of the angle ¢ from 0-to 7 and five valyés of the angle 6 from 0 to n/2) for each of
the six spectral groups. '

The calculation results are shown in Figs. 2 6, where t is the time in nsec; r is the radius and z is the
axial coordinate in cm; T is the temperature in 10° °K; W is the amount of energy lost inthe radiation inJ: and
q, F are the laser and characteristics flux densities of the: radiation in MW /cm?,

Figure 2 shows the distributions of the temperature along the axis of symmetry (with respect to'z for r=
0) for different instants of time. The picture is qualitatively close to the one obtained earlier in the solution
of the one-dimensional problem [3]: We arrive fairly rapidly at a quasistationary regime of propagation of the
plasma front in a direction opposite to the radiation, and the maximum temperature remains practically un-
changed. The velocity of its propagation (~70 km/sec) and the maximum temperature behind the front (90,000
°K) are close to the corresponding values for the plane case.

Figure 3 shows the variation with time of the boundary of the plasma region (more precisely, of points
with a temperature of 3000°K) in three characteristic directions — toward the laser beam (z ¥, in the opposite
direction (z~), and in the direction of R, perpendicular to the axis of symmetry (z=0). By time t=300 nsec
the length of the plasma flare (z ¥+ |z~ |)amountedto3.5cm, which is more than four times the diameter of -
the irradiated spot; in the lateral direction the dimension of the flare increased to almmost three times the
original dimension. The dashed-dot curve corresponds to the advance of the zone with maximum temperature
behind the front.

Figure 4 shows the isotherms characteristic of the spatial distribution of the temperature within the
flare for two instants of time — 153 and 233 nsec.
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The energy losses from the flare as a result of the radiation are shown in Fig. 5 as functions of time.
The value W of the emitted energy was found from the integral fluxes emerging through the end faces and the
lateral surface of the cylinder within which the flare was situated. The value of the energy exiting through the
lateral surface is indicated by subscript "0", the energy through the end face toward the laser beam by the
superscript "+ and the energy in the opposite direction by the superscript "-". The main energy loss takes
place as a result of the emission through the lateral surface. However, the total value of energy lost, W=W +
wt+W~, was found to be fairly small. Thus, by 300 nsec we have W=7 J, Wthh is only about 4% of the energy
supplied to the OQG.

Figure 6 shows the distribution along z (for r =0) of the flux density q of the laser radiation and the flux
density ¥, of the characteristic radiation, as well as the temperature T near the advancing plasma front for
time t =233 nsec. It can be seen that the laser radiation begins to be markedly absorbed in the region with
temperature higher than 10,000~15,000°K. It follows from Fig. 6 that the characteristic depth of penetration of
the laser radiation into the plasma (when q decreases by a factor of e) is ~0.2 cm, About the same value is
found for the distance from the point where the flux of characteristic radiation reached its maximum to the
point where it is practically completely absorbed. The temperature reaches its maximum value at distances
of ~0.4 em from the point where the intensive absorption of the laser radiation begins.

Thus, the characteristic width of the plasma front A is 0.2-0.4 cm, i.e., less than the radius of the beam.
Moreover, the fluxes of characteristic radiation are in general much lower than q,; they are only enough to
ensure heating of the plasma to the "ignition" temperature [1-3] and initiate the absorption of the laser, while
essentially the front moves because of the laser energy. This is also the explanation for the elongated nature
of the flare — expansion to the side takes place only as a result of the fluxes Fr, whichareontheorderof F, or
less. It becomes clear why in this case the advancing plasma front moves with a velocity close to thevelocityin
the plane case: The effects of two-dimensionality manifest themselves only at a great distance from the ad-
vancing front, outside the region in which the laser radiation energy is produced; therefore, the criterion of
closeness to the plane case is the condition A €Rg, not LZRy,.

Since the motion of the flare boundaries in the lateral direction and backward is gradually slowed down,
the accumulating hydrodynamic disturbances lead, in the final analysis, to the formation of a shock wave and
an expansion of the plasma by a hydrodynamic mechanism. However, for A £ R, this process has no effect on
the motion of the advancing front by the radiation mechanism.

Thus, for energies in the order of 100-1000 J we can observe the motion of plasma fronts by the radia-
tion mechanism at velocities substantially greater than the velocity of propagation of luminescence-detonation
waves, Such energies are within the limits that have already been attained today (see, for example, [7T]). It
would be of interest to conduct appropriate experiments and to compare their results with the theoretical pre-
dictions given above.
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